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The fabrication of crystalline 2D conjugated polymers with well-defined repeating units and in-built porosity presents a
significant challenge to synthetic chemists. Yet they present an appealing target because of their desirable physical and
electronic properties. Here we report the preparation of a 2D conjugated aromatic polymer synthesized via C–C coupling
reactions between tetrabromopolyaromatic monomers. Pre-arranged monomers in the bulk crystal undergo C–C coupling
driven by endogenous solid-state polymerization to produce a crystalline polymer, which can be mechanically exfoliated
into micrometre-sized lamellar sheets with a thickness of 1 nm. Isothermal gas-sorption measurements of the bulk
material reveal a dominant pore size of ∼0.6 nm, which indicates uniform open channels from the eclipsed stacking of the
sheets. When employed as an organic anode in an ambient-temperature sodium cell, the material allows a fast charge/
discharge of sodium ions, with impressive reversible capacity, rate capability and stability metrics.

The discovery of graphene, the archetypical two-dimensional
(2D) sheet of sp2-hybridized carbon, has stimulated interest
in the rational organic synthesis of π-conjugated 2D polymers,

which are expected to offer greater flexibility in terms of compo-
sition, topology and other physical properties compared with
graphene1–3. Quantum confinement in single or few-layer thick
2D organic sheets is expected to lead to emergent phenomena, in
addition to applications in flexible optoelectronic devices.
Although there are a multitude of methods to polymerize molecules
to produce linear, crosslinked or branched polymers with a diverse
range of functional groups and properties, the synthesis of crystal-
line 2D polymers that comprise repeating units that can create
topologically planar macromolecules (rather than linear) has met
with much less success4,5. Constructing 2D conjugated polymers
with strong and stable linkages, such as C–C bonds, has been a
long-sought aim of chemists3,5,6.

Müllen and co-workers demonstrated the structurally precise
synthesis of graphene-like polycyclic aromatic hydrocarbons7–9.
These graphene fragments of various sizes, shapes and edges
exhibit promising optoelectronic properties because of the
quantum confinement and their specific edge structure7–9.
Surface-templated strategies have been applied successfully to the
preparation of 2D-conjugated molecular nanostructures10–12.
A wide variety of molecular networks has been synthesized
through aryl–aryl coupling on substrate surfaces under ultrahigh
vacuum (UHV) conditions with crystalline domains in the range
of a few hundred square nanometres10,11. Molecular framework
approaches offer advantages over surface strategies because they
allow bulk synthesis on a larger scale5,13. Among them, 2D covalent
organic frameworks (COFs) constructed by linkages, such as
imine14,15 and phenazine16, under reversible bond-forming
conditions possess an in-plane conjugated periodic porous struc-
ture. Covalent triazine frameworks are also examples of molecular
platforms that possess intrasheet conjugation17,18. However, the

construction of COFs with strong bonds, such as C–C bonds, has
not yet been achieved5.

Recently, crystal engineering was shown to be an elegant approach
to non-conjugated 2D polymers through the reversible self-addition
polymerization between 2D-confinedmonomers in single crystals19–22.
Separating the crystallization process from the step at which bond
formation occurs, as is the case for the single-crystal approach,
usually enables a higher-quality crystallization. Consequently, the
prepared lamellar polymers are in the form of single crystals that
can be exfoliated into monolayer polymeric crystal20,21. Here we
designed a precursor 2-TBQP (2,7,13,18-tetrabromodibenzo[a,c]
dibenzo[5,6:7,8]quinoxalino-[2,3-i]phenazine), from which a crys-
talline 2D-conjugated aromatic polymer (2D-CAP) can be con-
structed by C–C coupling of the monomers in the crystalline state.
The synthesized 2D-CAP shows a distinct lamellar structure, from
which ultrathin 2D sheets can be exfoliated. Furthermore, 2D-CAP
has a highly uniform pore size of ∼0.6 nm, which is a result of the
aligned 1D open channels created by the stacking of 2D-CAP
sheets. We found that the well-defined channels in 2D-CAP can be
exploited for energy storage in sodium ion batteries (NIBs). When
2D-CAP is employed as an organic anode in an ambient-temperature
sodium cell, it gives a reversible capacity of 114 mAh g−1 at a high
current density of 5.0 A g−1 and retains 70% of its capacity after
7,700 cycles.

Results and discussion
Synthesis and characterization. The phenazine ring-fused
molecule 2-TBQP (Fig. 1a) was prepared through a condensation
reaction between 2,7-dibromophenanthrene-9,10-dione (2,7-DBPD)
and benzene-1,2,4,5-tetraamine in quantitative yield (Supplementary
Fig. 1). To examine how crosslinking between the 2-TBQP
monomers can produce a 2D network (Fig. 1a), we first performed
metal-surface-mediated polymerization between individual 2-TBQP
molecules adsorbed on Au(111). The resulting monolayer film was
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characterized by scanning tunnelling microscopy (STM). On Au(111),
at first the individual 2-TBQP molecules adsorb with no apparent
order. At an elevated temperature of 250 °C, the precursor
molecules undergo surface-assisted debromination and aryl–aryl
coupling10 to form a rectangular-grid network (Fig. 1b,c). STM
height profiles of the 2D-CAP grid show that its pore sizes are
∼13.0 Å along the long axis (Fig. 1d,i) and ∼7.4 Å along the short
axis (Fig. 1d,ii), which match well with the theoretical dimensions
of the pores in the single-layered 2D-CAP (Fig. 1a). Some
misoriented 2D-CAP domains are observed (Fig. 1b,c) because of
the free rotation of 2-TBQP monomers on the Au(111) surface
during the polymerization process. To reduce the rotational
misorientation, anisotropic Au(110) was used as the growth
substrate. Au(110) is characterized by the (1 × 2) missing row
reconstruction of the topmost Au atoms23, which allows molecules
to diffuse favourably along the missing-row direction. After
thermal activation of the adsorbed 2-TBQP molecules at 250 °C, a
better orientation of the grid network was, indeed, obtained
(Fig. 1e). A closer examination of the STM images (Fig. 1b,e and
Supplementary Fig. 12) shows that, besides 2D-CAP, there are
also a few 1D-CAPs, an unfavourable product of the polymerization.
These observations are in agreement with first-principles density
functional theory (DFT) calculations. The calculated formation
energy per monomer of the 2D-CAP is energetically more
favourable than that of the 1D-CAP by 0.04 eV (Supplementary
Fig. 13 gives the details). The irreversible C–C bond formation
prevents self-correction, which means that 1D-CAP, once formed,
introduces defects to the 2D network and reduces its crystallinity.

These studies therefore show that C–C cross-couplings among
the monomers can generate a periodic 2D-CAP network if the
kinetic factors can be optimized to suppress the formation of
1D-CAPs. Generally, it is difficult to prepare crystalline 2D- or
3D-conjugated polymers through dehalogenation-type C–C coup-
ling. For example, conjugated porous polymers synthesized

through Yamamoto coupling are usually amorphous as long-range
periodicity cannot be attained owing to the irreversible reactions
between randomly aligned monomers24,25. A better strategy may
be pre-ordering the monomers to facilitate well-defined C–C coup-
ling in a solid-state endogenous crystal-to-polycrystal conversion.

To test our hypothesis, 2-TBQP molecules were sublimated and
recrystallized in a tube furnace. Needle-like single crystals of
2-TBQP millimetres to centimetres in length were obtained
(Supplementary Fig. 3). The structure was solved by single-crystal
X-ray diffraction (XRD) analysis, which revealed a zigzag and
tightly packed lamellar structure through a displaced face-to-face
π–π interaction at a distance of 3.269 Å (Fig. 2a). Phenazine
ring-fused organic compounds are well known for their thermal
stability26,27, and thermal gravimetric analysis revealed that 2-TBQP
has only one obvious weight-loss stage that starts at 520 °C, which
is the onset temperature for the debromination (a detailed analysis
is given in Supplementary Fig. 2). After holding the temperature at
520 °C for six hours, the red single crystals turned into a shiny grey
needle-shaped polymer. To monitor the debromination process, we
carried out X-ray photoelectron spectroscopy (XPS) (Fig. 2b),
elemental analysis (Supplementary Table 1) and Fourier transform
infrared spectroscopy (Supplementary Fig. 7) of 2-TBQP before and
after the endogenous solid-state polymerization, which revealed that
the bromine had largely vanished. 2-TBQP displays an absorbance
peak in the ultraviolet and visible regions from 250 to 650 nm,
whereas the polymer shows a much broader absorbance range
from the ultraviolet to near-infrared regions (1,350 nm), which
indicates an extended delocalization of the π-conjugated skeleton
after polymerization (Supplementary Fig. 8). Scanning electron
microscopy (SEM) studies revealed that the bulk precursor
2-TBQP crystal (Fig. 2c) changed into polymers with clear lamellar
features (Fig. 2d). The embedded polymeric sheets are parallel
to the c axis of the original precursor 2-TBQP crystal. These crystals
can be readily exfoliated by Scotch tape into micrometre-sized,
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nanometre-thick sheets. Figure 2e shows a triangular sheet with
sides ∼15 μm in length and neat edges under a transmission electron
microscope (TEM). The exfoliated sheets were transferred onto a
silicon wafer and the lamellar features were confirmed by atomic
force microscopy (AFM) investigations. Figure 2f shows a triangular
sheet that partially covers the top of another sheet with neat edges.
An AFM height profile revealed that the thickness was ∼1 nm
(Fig. 2h), similar to that of single-layer graphene1.

We further probed the porosity of 2D-CAP by Ar adsorption/
desorption isotherm measurements. 2D-CAP shows a type 1
isotherm, which is typical for microporous absorbents with a signifi-
cant uptake in the low-pressure region (P/P0 < 0.1) (Fig. 3a). The
small hysteresis branches in the high-pressure region (P/P0 > 0.8)

can be ascribed to the interparticle voids of the powder product.
The Brunauer–Emmett–Teller (BET) surface area was evaluated as
SABET = 539 m2 g−1, which is in the range reported for 2D
COFs13, and the pore volume was 0.35 cm3 g−1. The product gener-
ated by heating the non-brominated analogue dibenzo[a,c]dibenzo
[5,6:7,8]quinoxalino[2,3-i]phenazine (DDQP, as shown in
Supplementary Fig. 1) showed no obvious porous structure
(Supplementary Fig. 11). The very narrow peak in the pore-
volume plot indicates that the pore width is quite homogeneous
and was estimated to be ∼0.6 nm (Fig. 3b). To determine the pore
size in 2D-CAP, DFT calculations were carried out to map the
energy surface as a function of slip distances between adjacent
sheets of bulk 2D-CAP, as shown in Fig. 3c. The lowest-energy
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structure is close to AA stacking, but with a 1.4 Å slip along the
x-axis direction and a 1.0 Å slip along the y-axis direction, as
shown by the two lowest-energy areas in Fig. 3c, which are equivalent
because of the symmetry of the 2D-CAP layer. The eclipsed stacking
arises from the interplay between the repulsive Coulomb interaction
that originated from the negatively charged N atoms on an adjacent
sheet and the attractive Coulomb interactions between the nega-
tively charged N atoms on one sheet and the positively charged C
atoms on the adjacent sheet. These positively charged C atoms are
the atoms that are bonded directly to electron-withdrawing N, as
shown by the Bader charge analysis in Fig. 3d and Supplementary
Fig. 14. The DFT-optimized lattice parameters and atomic coordi-
nates of the bulk 2D-CAP crystal based on the eclipsed stacking
reproduce the experimental XRD profile of the 2D-CAP crystalline
polymer. As shown in Fig. 3e, there is a good match between exper-
iment (blue curve) and theory (purple curve) for the (110) peak at
∼6.2° and the (002) peak at ∼26.7°, which is associated with the
interlayer distance and its presence is indicative of a good stacking
order. The peak at 7.4°, which corresponds to the (200) facet, may
also contribute to the broadness of the experimentally observed
XRD peak. The DFT-optimized bulk 2D-CAP structure gives a
pore width of 6.0 Å, in agreement with the Ar sorption measure-
ments in Fig. 3b. Taken together, the agreement between theory
and experiment, and the lamellar structure of the product, strongly
suggest that 2D-CAP is the predominant product of the endogenous
solid-state polymerization. The deep energy minimum (Fig. 3c)
caused by the Coulombic interactions also makes the presence of
stacking faults unlikely, which give rise to the formation of
ordered 1D open channels16,28.

Earlier, we discussed that solid-state polymerization starting
from the solid-crystal form of 2-TBQP was performed to form
2D-CAP selectively as the desired end product. In Figs 2 and 3,
we provide evidence that points to this preferred formation of 2D-
CAP after solid-state polymerization. Compared with the reaction
on the surface, a solid-state polymerization is expected to be

hindered kinetically by steric considerations according to the
arrangement of monomers in the crystal. We now describe the
crystal structure of 2-TBQP, in which monomer units are pre-
organized to facilitate solid-state polymerization. X-ray crystallo-
graphic analysis of 2-TBQP revealed a zigzag and tightly packed
structure though a displaced face-to-face π–π interaction (Figs 2a
and 4b). In the unit cell of the 2-TBQP crystal, there are two mono-
mers (Fig. 4a). As shown in Fig. 4b, monomers II and III, which are
approximately perpendicular to each other, interact via the CH/π
interaction with distances that range from 2.823 Å to 3.454 Å.
Monomers I and III interact via van der Waals interaction
between the Br2 atoms, where dBr2-Br2 is 3.716 Å, shorter than the
sum of their van der Waals radii (3.9 Å). The close proximity of
Br2 atoms strongly favours the expulsion of molecular bromine,
and thus the concomitant C10–C10 coupling29,30. C10–C10 coup-
ling would lead naturally to 2D-CAP, in which the C3 atoms on I
and III would couple to other monomers.

As the reaction occurs in the solid state, in which complete
rotation about the as-formed C–C bond is hindered, the identity
of the carbon atoms that couple to form the intermonomer C–C
bonds is critical to determining the end product formed.
Specifically, a C10–C10 coupling would result in the 2D-CAP struc-
ture, but a C3–C10 coupling would result in the 1D-CAP structure
(Fig. 4b). To determine the probability of forming C10–C10 bonds
versus C3–C10 bonds, molecular dynamics simulations using the
ReaxFF force field were performed. A constant pressure and temp-
erature ensemble (NPT) was used with periodic boundary con-
ditions. The periodic box for the simulation consists of a 4 × 4 × 4
supercell (6,656 atoms) of bulk 2-TBQP (with bromine atoms
removed from the monomers). Bromine atoms were removed as
we are concerned with the rearrangement of radicals after the
debromination, rather than the debromination process itself.
The debromination process may further increase the chance of
forming C10–C10 bonds, as discussed above, but this is not con-
sidered here. The temperature of the simulation was chosen to be
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800 K (similar to the temperature of 793 K used in the experiment),
the pressure 0 MPa and the time step for the simulation 0.25 fs. Four
runs were performed using the C/H, C/C and C/N interaction par-
ameters given by the force field in Newsome et al.31. In all cases, an
analysis after 400,000 time steps (0.1 ns) yields about 125 (124–127)
C–C connections, of which all are C10–C10 connections. No C3–
C10 connections were present. The exclusive formation of C10–
C10 bonds was also observed using other force fields32,33. Thus,
we have clearly shown that the arrangement of monomers in the
2-TBQP crystal strongly favours C10–C10 coupling over C3–C10
coupling, as required for the preferred formation of 2D-CAP.
Details of the molecular dynamics trajectories are shown in
Supplementary Fig. 16. After C10–C10 coupling, the dihedral
angle between the two connected monomers (I and III in Fig. 4b)
is ∼90 °. DFT calculations further suggest that it is energetically
favourable locally for the dihedral angle at the C10–C10 bond to
relax from ∼90 ° to 180 ° (Supplementary Fig. 17). Furthermore,
coplanar stacking would be favoured because of the π–π inter-
action34. This is also the case for crystals of other aromatic com-
pounds35,36. Planarization is not observed within the timescale of
our molecular dynamics simulations but, as shown in Fig. 4e,
after solid-state polymerization in the experiment, the needle-
shaped single crystal of 2-TBQP (left, 297.6 μm) on the silicon
wafer expanded its long (c) axis by approximately 2.1% to
303.9 μm (right), which is consistent with sheet planarization. In
the real experiment, C–Br bonds were not broken at the same
time, which results in unevenly evolved C–C coupling in the bulk
crystal. Consequently, the domain size of the resulting 2D
polymer is limited, which leads to the broadness in the XRD
profile (Fig. 3e) and the Raman spectrum. Supplementary Fig. 18
shows the experimental Raman spectrum collected for the exfoliated
2D-CAP sheet on a silicon wafer. It matches well with the theoretical
Raman signal generated with the ideal 2D-CAP single layer, except

for the broadening feature that resulted from the boundary scatter-
ing between crystalline domains of limited size, which is consistent
with the nanocrystalline nature of 2D-CAP.

Performance as an organic anode. Conjugated 2D-CAP consists of
aligned 1D open channels of ∼0.6 nm in diameter, which can
potentially provide fast and smooth diffusion pathways for charge
storage. Sodium ion batteries (NIBs) are considered as promising
candidates for large-scale energy-storage devices in intermittent
renewable energy and a smart grid, for which a low-cost, high-
power capability and a long-term stability are particular
important37,38. A fundamental challenge in this area is to
surmount the sluggish kinetics and destructive effects associated
with electrochemical insertion/extraction of Na ions, owing to
their larger radius than that of Li ions, which renders most high-
performance lithium ion battery anode materials unsuitable for
NIBs38,39. Recent studies show that porous polymers with
continuous interspaces are promising for smooth and stable
reversible-charge storage40,41. However, there are scant reports on
the use of porous polymers as anodes for sodium storage. To
interrogate the sodium-storage ability of 2D-CAP, to make the
anode we fabricated coin cells with the composition 75 wt% of
synthesized 2D-CAP mixed with 10 wt% of Super P conductive
carbon and 15 wt% of sodium alginate. This was combined with
metallic Na counter electrodes to fabricate a half-cell to evaluate
the electrochemical performance. That only a low weight
percentage of conductive carbon was added attests to the
conductive nature of 2D-CAP. Figure 5a shows galvanostatic
charge capacities of 2D-CAP at various current densities. A 2D-
CAP-based electrode was charged to 2.5 V (versus Na/Na+) after a
discharge to 0.005 V at a low current density of 0.1 A g−1. The
2D-CAP electrode showed a reversible charge capacity of 250
mAh g−1 at the first cycle and achieved a stable capacity of ∼216
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mAh g−1 after ten cycles. Supplementary Fig. 19a shows a typical
cyclic voltammogram of 2D-CAP. In the first negative scan, there
are two irreversible reduction peaks at 0.7 and 0.4 V, which are
generally ascribed to the decomposition of electrolyte and the
formation of a solid electrolyte interface (SEI) on the surface of
active materials42,43. In the third and fifth cycles, no obvious
change was observed, which indicates that 2D-CAP is stable in
the subsequent cycles. As presented in Supplementary Fig. 19b,
the first cycle coulombic efficiency of 2D-CAP at 0.1 A g−1 is
∼51% and approached almost 100% after the initial few cycles.
The irreversible part is mainly contributed by the formation of SEI.

As shown in Fig. 5a, 2D-CAP reached stable capacities of 185,
159, 135 and 118 mAh g−1 at 0.5, 1.0, 3.0 and 5.0 A g−1, respectively.
A stable capacity of 105 mAh g−1 could be obtained at a high
current density of 10.0 A g−1. Remarkably, this is about a 50%
capacity retention for a two-order increase in the charging/
discharging current density from 0.1 to 10.0 A g−1 in an ambient
sodium cell. Figure 5b shows the discharge–charge profiles of
2D-CAP at different current densities. Most noteworthy is the
long-term cycling stability of 2D-CAP at a high-power output.
The 2D-CAP sodium cell anode achieved an excellent cycle
performance over 7,700 cycles and retained 70% of its initial
capacity of ∼114 mAh g−1 at a high current density of 5.0 A g−1

(Fig. 5c). The small rise in capacity at around the 4,500th cycle
can be ascribed to the gradual penetration of electrolyte into the
nanoporous structure, which facilitates the conduction of sodium
ions as well as the activation of the electrode44,45. In addition, an
organic gel-like film that is reversibly formed on the interface of
the active materials may also provide additional charge-storage
sites through pseudocapacitive processes46,47. A comparison of the
sodium storage performance of 2D-CAP with reported sodium
cell anodes is presented in Supplementary Table 3. In terms of a
high power output and stability, 2D-CAP is superior to all those
given in Supplementary Table 3. The superior storage performance
of sodium originates from the open channels in the π-conjugated
porous structure, which allows a fast and smooth Na+ diffusion.

An electrochemical impedance spectroscopy study provided
further evidence for the structural stability of the electrode
(Supplementary Fig. 19c). Nyquist plots of the 2D-CAP electrode
after charging to 2.5 V at the first, 1,000th and 5,000th cycle show
no significant increase of the impedance value between the first
and 5,000th cycle, which suggests good electrical contact and
charge transport in the 2D-CAP based electrode.

Conclusions
In summary, we have successfully synthesized a crystalline 2D-
conjugated aromatic polymer (2D-CAP) by the endogenous solid-
state polymerization of a molecular crystal based on C–C coupling.
The 2D-CAP crystalline polymer has a layered stacking structure
and can be readily exfoliated into ultrathin sheets. 2D-CAP also
has a highly ordered porosity (pore size ∼0.6 nm) created by the
eclipsed stacking of 2D-CAP sheets. Due to its intra-sheet conju-
gation and ordered open 1D channel, 2D-CAP exhibits unprece-
dented cycle stability and rate capability when applied as an
anode in an ambient-temperature sodium cell. Molecular dynamics
simulations showed that for the solid-state polymerization reaction,
C–C coupling only occurs at specific C sites that favour the for-
mation of 2D-CAP. The endogenous solid-state polymerization
route described here can be applied to other classes of halogenated
monomers for which solid-state polymerization based on a C–C
coupling reaction may also give rise to a crystalline polymer with
a highly regular porosity. The approach presented here opens a
new avenue to construct novel 2D polymers with highly regular por-
osity and chemical stability, which is currently a major challenge in
synthetic chemistry.

Methods
Synthesis of 2-TBQP. 2,7-DBPD (0.76 g, 2.1 mmol), and benzene-1,2,4,5-
tetraamine tetrahydrochloride (0.28 g, 1.0 mmol) were transferred into a round-
bottom flask and suspended in 6 ml of ethanol and 20 ml of acetic acid to make a
brown suspension in an Ar atmosphere with stirring, and heated to 100 °C. After the
addition of 1.0 ml of triethylamine, the mixture immediately changed to a red
colour, and was further refluxed at 130 °C for 6 h. Once cooled to room temperature,
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Figure 5 | Sodium storage performance of 2D-CAP electrode in the potential range 0.005–2.5 V (versus Na/Na+). a, Charge capacities of the 2D-CAP
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the mixture was diluted with acetic acid and poured into 200 ml of water. The red
precipitate was collected and exhaustively washed by soxhlet extraction with water,
ethanol, chloroform, THF, N,N-dimethylformamide and ethanol again, and dried at
120 °C overnight to yield 2-TBQP as a copper-coloured powder in quantitative yield.
Elemental analysis (%): calculated for (C34H14Br4N4): C, 51.16, H, 1.77, N, 7.02, Br,
40.05; found: C, 50.72, H, 2.05, N, 7.11, Br 39.93. High-resolution mass spectrometry
(negative mode) m/z = 797.7895 (Supplementary Fig. 4), calculated for
C34H14Br4N4, 797.7911; no solution NMR data were collected because of 2-TBQP’s
poor solubility. Its structure was confirmed with single-crystal XRD analysis.

2-TBQP single-crystal growth. Crystals were grown in a three-zone electric furnace
with a stream of Ar gas flow. Typically, 200 mg of the as-prepared crude compound
2-TBQP was placed on a quartz boat and inserted into a 25 mm quartz tube. The
tube was placed in the furnace and connected to a supply of Ar. The Ar flow was
adjusted to 50 ml min–1. The first zone contained the initial sample and was heated
to 380 °C to promote volatilization. The second zone was the region of molecular
transport and was heated to 340 °C. The third zone was heated to 250 °C to
encourage crystal deposition. These heating and gas-flow conditions yielded
needle-shaped crystals ∼200 μm in the short dimensions and over 1 mm long on the
quartz tube wall in about 8 h. Centimetre-long crystals can be obtained by extending
the heating time to 24 h.

Thermal-initiated endogenous solid-state polymerization. A 10 mm quartz tube
closed at one end and holding 2-TBQP crystals was paced in a tube furnace under an
Ar flow of 100 ml min−1. The closed end of the tube faces the inert of Ar flow to rule
out disturbance by the gas flow during polymerization. The quartz tube was heated
at 10 °C min–1 to 520 °C and maintained at 520 °C for 6 h to complete the
polymerization. A tiny amount of the precursor was sublimated at the beginning of
heating process, and deposited in the low-temperature area of the tube furnace. Finally,
the tube furnace was cooled down to room temperature at 2 °C min–1. The weight
percentage of the residue was around 62%, close to the theoretical value (59.95%).

STM characterization. STM experiments were performed in a UHV chamber
(base pressure of 10−10 mbar) with a UHV STM unit (SPECS high temperature-STM
150 Aarhus). The Au(111) and Au(110) surfaces (from Mateck) were cleaned by
repeated Ar-ion sputtering at P(Ar) = 1 × 10−5 mbar, 1.5 keV, followed by annealing in
the preparation chamber (base pressure 1 × 10−9 mbar) at 600 °C. 2-TBQP molecules
were deposited onto the substrates with a Knudsen cell (fromMBE-Komponenten) at
320 °C for 2–5 min. Polymerization was induced by annealing the samples at 250 °C.
for 2 h. All the samples were characterized by STM at room temperature.

Molecular dynamics simulations.Molecular dynamics simulations were performed
using the empirical force fields available in the ReaxFF package. The temperature
was kept constant at 800 K using a temperature damping constant of 100 fs, the
molecular dynamics time step was set to 0.25 fs, and the pressure was set to 0 MPa
with a Berendsen pressure-damping constant of 500 fs.

DFT calculations. Details of the DFT calculations are given in the
Supplementary Information.

Electrochemical characterization. To investigate the sodium-storage performance,
a uniform slurry was prepared by mixing 2D-CAP (75 wt%), Super P carbon black
(10 wt%) and sodium alginate binder (SA, 15 wt%) in water and stirring overnight.
The slurry was coated on copper foil and dried at 80 °C in vacuum oven for 24 h. The
coated copper foil was cut into discs 12 mm in diameter. The CR2016 coin cells were
assembled in an Ar-filled glove box by using sodium metal as the reference electrode
and counter electrode, with a glass microfiber filter (Whatman) as the separator.
NaClO4 (1.0 M) in anhydrous propylene carbonate was used as the electrolyte. The
cells were galvanostatically discharged/charged at various current densities in the
voltage range of 0.005–2.5 V (versus Na/Na+) on a Bitrode battery tester system
(Model SCN-12-4-5/18) with a data collection time interval of 0.3 s. The capacity
was calculated based on the mass of active materials, which is 75% of the electrode.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or
from the corresponding author on reasonable request. Crystallographic data for the
structures reported in this paper have been deposited at the Cambridge
Crystallographic Data Centre (CCDC) under the deposition numbers CCDC
1455701 (2-TBQP) and CCDC 1455702 (DDQP). Copies of the data can be obtained
free of charge from www.ccdc.cam.ac.uk/data_request/cif.
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